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Introduction

Basic Result (Casella and Berger, Theorem 2.1.10, p. 54):

For a continuous random variable W , the cumulative distribution
function U = FW (·) is uniformly distributed on [0,1].

Thus, any continuous random variable W can be transformed to a
uniform random variable and conversely, any uniform random variable
can be transformed to a random variable V with any desired
continuous distribution.
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Introduction

This fact, thus, provides an approach for the transformation of data
to any desirable distribution.

In particular, this can be used as an all purpose approach to introduce
normality so that analyses, such as linear model theory based
modeling, can be performed under the usual normality assumptions.

NORTA (NORMAL to ANYTHING) algorithms use this fact
backwards to simulate random numbers from any desired distribution
after generating standard normal variates.
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Introduction

However, one fact that should not be lost in this approach is that the
information about the location and scale is essentially lost, in much
the same way as the information about the shape and the skewness
of the original distribution.

While symmetrized (speci�cally normally distributed) data are
desirable for data analysis, the approach will therefore, prevent us
from making any inference about the location in most situations.

A common approach to deal with skewed data is through the use of
transformation (to normality). The logarithmic, square-root, arcsine
and more generally, Box-Cox transformations have been the common
tools to arti�cially induce, among other desirable features, symmetry
for the asymmetric data and have been used extensively in a variety
of statistical problems.
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Introduction
In the multivariate context, when the interest is in studying the
dependence structures and possibly prediction, a generalization of the
approach described above can be extremely useful

and
the purpose of this talk is to introduce the usefulness of our
suggested approach in various multivariate situations.

The objective here is to come up with an approach to transform the
data where classical techniques of multivariate analyses [Speci�cally,
here for missing data imputation] can be readily adopted for the
transformed data.

Yet, the method should be such, so that inference and especially the
predictions for the transformed data can be brought back to the
original context.
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Multivariate Copula-Transformation

We will �rst de�ne the concept of copula.

De�nition
A function C from a d-dimensional rectangle [0; 1]d to [0; 1] is called
a copula if there is a random vector UUU = (U1; U2; :::; Ud )′, such that
for i = 1; :::; d , Ui ∼ U(0; 1), the uniform distribution on interval
[0,1] and C (u1; u2; :::; ud )
= P[U1 ≤ u1; U2 ≤ u2; :::; Ud ≤ ud ] where U1; U2; :::; Ud ∈ [0; 1]:

Thus, C (·) is essentially a d-dimensional multivariate cumulative
distribution function of d random variables, each distributed
uniformly in the interval [0,1].
The dependence structure is not stated in the de�nition and cannot
be, in general, speci�ed. It depends on the nature and the joint
behavior of the particular set of the random variables.
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Multivariate Copula-Transformation

More light on this issue is shed by Sklar’s Theorem. Assume ourrandom variables to be all continuous valued.
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Multivariate Copula-Transformation

Theorem
(Sklar’s Theorem)
A function F : Rd → [0; 1] is the distribution function of some
continuous random vector XXX = (X1; X2; :::; Xd )′ iff there is a copula
C from [0; 1]d to [0; 1] and d univariate distribution functions
F1; F2; :::; Fd such that

C (F1(x1); F2(x2); :::; Fd (xd )) = F (x1; x2; :::; xd ) (1)

for XXX = (X1; X2; :::; Xd )′ ∈ Rd :

The functions Fi (·) are clearly the (marginal) cumulative distribution
functions of corresponding random variables Xi ; i = 1; 2; :::; d : Thus,
copula expresses the dependence among X1; X2; :::; Xd through their
marginal cumulative distribution functions.
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Multivariate Copula-Transformation

It provides a way to express and obtain the joint cumulative
distribution functions through an appropriate copula. Since F (·) is
continuous and hence admits an inverse function F −1(·), it follows
from above that

(X1; X2; :::; Xd )
dist
= F −1C (F1(x1); F2(x2); :::; Fd (xd )); (2)

where dist indidq8552 T





Multivariate Copula-Transformation
Let us concentrate on (??) namely,

C (F1(x1); F2(x2); :::; Fd (xd )) = F (x1; x2; :::; xd )

Let F (·) and G (·) be two d-dimensional multivariate continuous
CDFs, with corresponding marginal CDFs F1(·); F2(·); :::; Fd (·) and
G1(·); G2(·); :::; Gd (·) respectively. Also assume that F (·) and G (·)
both correspond to the same copula function C (·): Thus, with
random vector XXX having the CDF F (·) and random vector YYY having
that as G (·); we have

F (x1; x2; :::; xd ) = C (F1(x1); F2(x2); :::; Fd (xd )) (4)

= C (u1; u2; :::; ud ) = C (G1(y1); G2(y2); :::; Gd (yd ))

= G (y1; y2; :::; yd );

for some y1; y2; :::; yd ; so that G −1(yi ) = ui ; i = 1; 2; :::; d where
G −1(·) is the inverse function of G (·):
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Multivariate Copula-Transformation

Note that the only assumption here is that the F (·) and G (·) share
the common copula. By Sklar’s Theorem, it also follows that given
F (·) (or G (·)), the copula is unique.

Thus, if G (·) is desired to be a particular cumulative distribution
function then it automatically determines the choice of C (·):



Multivariate Copula-Transformation

The above calculation succinctly provides, an approach to transform
the data on multivariate random vector XXX having cumulative
distribution function F (·) to another random vector YYY having the
cumulative distribution function G (·): More succinctly, it can be X



Multivariate Copula-Transformation

This is pictorially depicted in Figure on next slide.

For our work, with an intention to enable us to do classical
multivariate modeling, the function G (·) will usually be a multivariate
normal cumulative distribution function. Consequently, the choice of
C (·) must be a Gaussian copula.
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Multivariate Copula-Transformation

As a graphical representation for two given distribution functions say,
F (·)F (·)F (·) and G (·)G (·)G (·) with common copula say C (·)C (·)C (·), our transformation
works as,

F (·)F (·)F (·) −→ C (·)C (·)C (·) −→ G (·)G (·)G (·)

Figure 1
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Multivariate Copula-Transformation

Accordingly, implicit assumption on the distribution function F (·) of
our raw data is that even though F (·) itself may not be multivariate
normal distribution function, its copula function is Gaussian.

Such an assumption is very reasonable.

Of course, for the data analysis, we must resort to the empirical
version of F (·): computed from data.
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Multivariate Copula-Transformation

Thus, in essence, we make the assumption that the common copula
is a Gaussian copula �(µµµ, ���)(·);

In principle, the choices of mean vector ��� and covariance matrix ���
are arbitrary.

Since our interest is in doing the multivariate analyses of dependence,
we will choose ��� cautiously to retain the essential dependence
features of data.

On the other hand, since the choice of ��� is often unimportant in such
situations, we will take it’s value to be the zero vector.
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Multivariate Copula-Transformation

As a graphical representation for a given distribution of data, say DDD ,
our transformation works as

DDD −→ UUU −→ NNN

and in a reverse direction as

NNN −→ UUU −→ DDD ;

where UUU





Copula Transformed Multiple Regression: Data

Sets

i) Wicklin’s Data (2013):Taken from Wicklin’s book, where we
have four random variables, jointly exhibiting dependence, but
each with marginal distributions which are functionally very
di�erent.

Speci�cally, we have the response variable y distributed as
standard lognormal (� = 0, � = 1) and explanatory variables x1,
x2 and x3 respectively, distributed as standard normal, uniform
on [0,1] and standard exponential (� = 1).

Clearly, considerable skewness is present in y and x3: Also, the
conditional distribution of y given x1, x2 and x3 is clearly not
normal. A total of 100 observations are available.
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Copula Transformed Multiple Regression: Data

Sets

Other Data sets (not discussed):

ii) Financial Indexes Data

iii) SENIC Data

iv) Prostate Cancer Data

v) Real Estate Sales Data

vi) Used Car Data

vii) University Admissions Data
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Copula Transformed Multiple Regression: Analyses

For all the above data set we will �t the multiple linear regression
model regressing y on k explanatory variables x1; x2; :::; xk : Clearly,
the value of k is di�erent for various data sets. No cross product or
higher degree polynomial terms are assumed.

The objective is to compare the regression models �tted on the
original data with those obtained by �tting the equivalent model on
the corresponding Gaussian-copula transformed data.
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Copula Transformed Multiple Regression: Analyses

Speci�cally, since the number of observations and the functional
forms of the models will be the same in the two situations, the
coe�cient of determination R2 values can be compared, along with
the statistical signi�cance of the models.

However, from a practical point of view, quality of prediction is also
important and thus, we will also compare the prediction errors as well
as the prediction intervals.

[After all we are going to predict the missing values so quality
of prediction better be superior.]

For a fair comparison, these two will be obtained for the original
response variable.
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Copula Transformed Multiple Regression: Analyses

Here we naturally replace C = CRRR (Gaussian Copula), G = �RRR (as
we are using Gaussian-copula transformation) and F (·) is the

empirical distribution function of the bivariate data on

�
y
x

�
:

RRR is the correlation matrix.
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Copula Transformed Multiple Regression: Analyses

To make these predictions independent of the model �tting process,
in all cases, divide the data into training and test sets by respectively
assigning the odd (even) numbered observations to the training (test)
sets.

Since the Gaussian copula is used, data on all the transformed
variables have zero mean and unit standard deviation.

That is however a non-issue, since, R2 as well as F -test for the model
are invariant of such a transformation.

Again, since predictions are obtained in both the cases, for the data
on original scale, such a location shift and scaling change do not
�gure in the comparison.
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Copula Transformed Multiple Regression:

Algorithm

Algorithmically, the following steps are adopted in the sequence.

1. Transform the training raw data on random vector
�

Y
XXX

�
to data

on uniform random variables UY ; UX1 ; : : : ; UXk
using the

empirical cumulative distribution function estimated from the
data. From the estimated covariance matrix, a correlation
matrix for

�
Y
XXX

�
and the corresponding empirical correlation

matrix ��� of UUU = (UY ; UX1 ; : : : ; UXk
)′ are obtained. These

provide the estimates of the copula parameters.
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Copula Transformed Multiple Regression:

Algorithm

2. This is our target correlation matrix and we want, more or less,
the same correlation among the multivariate uniform variables
and among the multivariate normal transformed variables. Using
the inverse multivariate normal cumulative distribution function
on UUU ; we obtain the transformed data which are jointly
distributed as the multivariate normal. We denote this by

�
Y ∗

X ∗X ∗X ∗

�
.





Copula Transformed Multiple Regression:

Algorithm

4. For predictions, comparison is appropriate only in the original
scale. That is readily available for the �rst model.



Copula Transformed Multiple Regression:

Algorithm

Let the corresponding two predicted values of y be by and byc

respectively. Then for the test data set, the two sum of squared
prediction errors (SSPE) are given by

SSPERaw =
X

test data

(yi − byi )
2 (8)

and
SSPECopula =

X
test data

(yi − byc,i )
2: (9)
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Copula Transformed Multiple Regression:

Algorithm

To obtain the prediction interval (say for a future observation) on the
original scale and using model in (??), a little more care is needed.
For a given XXX = xxx f (and hence X ∗X ∗X ∗ = xxx∗

f ), denote the predicted value
of y ∗ using model (??) by by ∗

f and let the corresponding prediction
interval be (by ∗

f ,L , by ∗
f ,U). Since by ∗

f , by ∗
f ,L and by ∗

f ,U are the quantities
about a future incoming observation, correspondence may not be
readily available within the data set.



Copula Transformed Multiple Regression: Wicklin’s

Data

We circumvent this problem by simulating a large number of
observations from the k− dimensional multivariate uniform
distribution corresponding to our copula, and compute the
corresponding values of y and y ∗. Let these simulated quantities be
denoted by placing a tilde (∼) above the corresponding variable.

If by ∗
f is sandwiched between two such (closest) simulated values, sayey ∗

t and ey ∗
t+1, then the predicted value of y , say byc,f can be obtained

by interpolation from eyt and eyt+1, each of which has one to one
correspondence with ey ∗

t and ey ∗
t+1 via euy ,t and euy ,t+1.

The same procedure is followed to interpolate the two prediction
limits corresponding to by ∗

f ,L and by ∗
f ,U . Accordingly, a prediction

interval (byc,f ,L , byc,f ,U) is obtained.
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Copula Transformed Multiple Regression: Wicklin’s

Data

We have done this for our data sets for all the observations and
plotted them against the serial number, which represents the
increasing order of the (raw) data, on the response variables.

Note that this approach will also be applicable and should be
followed, in the real situations when the prediction is an important
objective.
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Copula Transformed Multiple Regression: Wicklin’s

Data

I will describe the analysis of Wicklin’s data in detail so as to fully
appreciate the steps of the modeling and interpretation.

The data set, consisting of 100 observations, is �rst arranged in the
increasing order of the response variable.

We have divided the data into training data and test data, each
consisting of �fty observations. Increasing order of values on response
variable and taking alternative values in the training data and test
data, respectively, ensure, that the two data sets are largely similar
and represent the same underlying population.

R2, Adjusted R2, p-values and F -tests corresponding to model are
obtained for the training data. For prediction, test data will be used.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Residual Plots:
Figures 2 and 3 respectively represent the residual plots for the
training data for the traditional multiple regression analysis of raw
data and that for the Gaussian copula transformed data. The
patterns in Figure 2 clearly indicate non-randomness and a poor �t.
On the contrary, the residual plot is near-ideal in Figure 3.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 2: Wicklin’s data: Scatter plot of residuals for raw training
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 3: Wicklin’s data: Scatter plot of residuals for copula
training dataRavi Khattree Distinguished University Professor of Applied Statistics Co-Director, Center for Data Sciences and Big Data Analytics Participating Member, Center for Biomedical Research Oakland University (Oakland University)Non-Normal Imputation Marquette U., Oct. 25, 2024 38 / 1



Copula Transformed Multiple Regression: Wicklin’s

Data

QQ Plots:
The same contrast between the two approaches is found between the
two Q − Q plots, given in Figures 4 and 5 for the corresponding
residuals.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 4: Wicklin’s data: Residual Q − Q



Copula Transformed Multiple Regression: Wicklin’s

Data

Figure: Figure 5: Wicklin’s data: Residual Q − Q



Copula Transformed Multiple Regression: Wicklin’s

Data

Table 1 gives the values corresponding to model �t and the statistical
signi�cance of the model. Drastic improvement in R2 (38.86% vs.
92.47%) and Adjusted R2 values is established. The same can be
said about model F -statistics and corresponding p-values.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table 2, shows point predictions for the data along with
corresponding 95% prediction intervals.

For the sake of brevity, only the �rst ten, last ten and middle ten
observations of test data are presented. The superiority of Gaussian
copula based approach is readily seen. All the point predictions using
this approach are closer to the true observed responses. For the
observation number 50 of the table, the observed value of the
response variable is relatively very large.
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 2A: Wicklin’s data: Comparison between raw and copula
regression models for test data

Obs. y by by∗ 95% Raw Pred. Int. 95% Copula Pred. Int.

1 0.140 -1.265 0.144 ( -5.050 , 2.521 ) ( 0.132 , 0.271 )
2 0.248 -0.359 0.248 ( -4.076 , 3.359 ) ( 0.133 , 0.356 )
3 0.249 0.085 0.284 ( -3.496 , 3.666 ) ( 0.168 , 0.396 )
4 0.283 0.063 0.334 ( -3.565 , 3.691 ) ( 0.247 , 0.492 )
5 0.293 0.148 0.284 ( -3.440 , 3.736 ) ( 0.168 , 0.396 )
6 0.316 0.539 0.374 ( -2.998 , 4.076 ) ( 0.254 , 0.615 )
7 0.353 1.015 0.360 ( -2.553 , 4.583 ) ( 0.249 , 0.570 )
8 0.369 -0.913 0.306 ( -4.703 , 2.876 ) ( 0.222 , 0.484 )
9 0.385 1.536 0.485 ( -2.015 , 5.088 ) ( 0.321 , 0.913 )
10 0.396 1.268 0.415 ( -2.268 , 4.803 ) ( 0.291 , 0.761 )
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Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 2B: Wicklin’s data: Comparison between raw and copula
regression models for test data

Obs. y by by∗ 95% Raw Pred. Int. 95% Copula Pred. Int.

21 0.751 1.781 0.734 ( -1.762 , 5.324 ) ( 0.396 , 1.217 )
22 0.770 -0.284 0.853 ( -4.034 , 3.467 ) ( 0.437 , 1.567 )
23 0.822 0.455 0.923 ( -3.194 , 4.105 ) ( 0.487 , 1.570 )
24 0.854 1.967 0.749 ( -1.547 , 5.480 ) ( 0.398 , 1.350 )
25 0.922 1.731 1.079 ( -1.807 , 5.269 ) ( 0.669 , 2.306 )
26 0.933 2.989 0.965 ( -0.583 , 6.560 ) ( 0.540 , 1.771 )
27 0.981 2.526 1.414 ( -1.030 , 6.082 ) ( 0.801 , 2.758 )
28 1.002 2.852 0.849 ( -0.745 , 6.448 ) ( 0.451 , 1.498 )
29 1.078 1.230 0.918 ( -2.321 , 4.780 ) ( 0.487 , 1.564 )
30 1.133 2.267 1.207 ( -1.338 , 5.872 ) ( 0.701 , 2.686 )

Ravi Khattree Distinguished University Professor of Applied Statistics Co-Director, Center for Data Sciences and Big Data Analytics Participating Member, Center for Biomedical Research Oakland University (Oakland University)Non-Normal Imputation Marquette U., Oct. 25, 2024 46 / 1



Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 2C: Wicklin’s data: Comparison between raw and copula
regression models for test data

Obs. y by by∗ 95% Raw Pred. Int. 95% Copula Pred. Int.

41 2.689 1.925 2.685 ( -1.627 , 5.478 ) ( 1.212 , 4.758 )
42 2.751 3.061 3.191 ( -0.489 , 6.612 ) ( 1.563 , 7.035 )
43 2.763 3.589 2.752 ( -0.007 , 7.186 ) ( 1.397 , 5.562 )
44 3.456 1.830 4.112 ( -1.726 , 5.387 ) ( 1.865 , 8.987 )
45 3.951 4.698 4.625 ( 0.914 , 8.481 ) ( 2.559 , 11.435 )
46 4.290 3.753 2.758 ( 0.103 , 7.402 ) ( 1.400 , 5.999 )
47 4.883 3.236 4.860 ( -0.383 , 6.855 ) ( 2.690 , 12.911 )
48 6.952 3.790 5.731 ( 0.068 , 7.513 ) ( 2.747 , 16.067 )
49 9.133 3.052 9.577 ( -0.499 , 6.604 ) ( 4.236 , 20.029 )
50 20.029 4.557 7.294 ( 0.809 , 8.305 ) ( 3.426 , 18.878 )
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Copula Transformed Multiple Regression: Wicklin’s

Data

For Obs. 50: Observed response is very large; Both approaches
underpredict the true response. Yet, the Gaussian-copula based
prediction is still closer.

The prediction intervals as given in Table 2 and also graphed in
Figures 6 and 7, further show that the prediction intervals are usually
(and considerably) narrower when the approach is based on Gaussian
copula, as compared to the raw data based regression.

The only few exceptions occur for the later few observations, but as
seen in Table 2 for the last two observations, the prediction intervals
based on usual regression analysis of data do not even contain the
true observed value, while those based on the copula-regression
approach do so for all observations except the last one.
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Copula Transformed Multiple Regression: Other

Data Sets

The residuals from the regression for the raw data for many of the
datasets indicated earlier exhibit the violation of multivariate
normality and linearity of regression.

The copula transformation to multivariate normality all together
circumvents these issues rather than diagnosing and correcting each
of them one by one. As Cherubini, Gobbi, Mulinacci and Romagnoli
in their book (p. 30), explicitly point out,



Copula Transformed Multiple Regression: Wicklin’s

Data

“



Copula Transformed Multiple Regression: Wicklin’s

Data

Table: Table 3: A comparison of the two regression models for various
data sets (R = Raw data; G-C = Gaussian Copula Transformed)

Model Est. Skewness Adj. p-Val Ave Sqrd

Sr. Data based Mardia’s PC R2 R2 Model Pred Err

No. ona Skewness ( bβ) Skewness (bη)b (Test Data)

1. Wicklin’s
ntraining = 50 R 35.724 0.412 0.389 0.349 < 0.0001 6.997
ntest = 50 G-C 0.439 0.024 0.923 0.920 < 0.0001 3.383

2. Financial Indexes
ntraining



Imputing the missing values through copula

transformation

Denote the fully observed variables (complete covariates) by
X = (Xobs; Xmis)

′′▽∞



Imputing the missing values through copula

transformation

Incomplete Data
(X; Y )

Uniform Data
(UX; UY )

Standard Normal Data
(SX; SY )

Standard Normal Data
(SX; S∗

Y )
Uniform Data

(UX; U∗
Y )

Imputed Data
(X; Y ∗)

U = Fi (·) S = �−1



Imputing the missing values through copula

transformation

Algorithm - Univariate Missing Data Pattern:



Imputing the missing values through copula

transformation

Use one of the imputation procedures (e.g. regression, MCMC,
FCS) as desired, to impute all missing values and obtain dataset
(SX; S∗

Y ) with imputed data.

Back-transform the �lled-in data to original scale via
U∗

Y = �(S∗
Y ) according to the inverse of empirical marginal

distribution of Y , i.e., Y ∗ = F −1
Y (U∗

Y ).
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Imputing the missing values through copula

transformation
We apply the Iman-Conover method to generate skewed multivariate
datasets.

The reason we chose this method is that we can specify the marginal
distribution of each variable and also the correlation structure.

We design two groups for multivariate data setting with marginals of
components as follows.

Table: Table 7: Marginal distributions of simulated data sets using
Iman-Conover method

Group X1 X2 X3 X4

1 Log-normal (0, �) Pareto (1,1) Normal (0, 1) Uniform (0, 1)
2 Log-normal (0, �) Normal (0,1) Exp (1) Uniform (0, 1)
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Imputing the missing values through copula

transformation

The sample size is taken as 100 and the number of missing cases as
5.

To evaluate the quality of imputation, simulate each scenario
NSIM=1; 000 times and k imputation(s) and compute the mean of
the sum of squared residuals by

MSSR =
1

NSIM

NSIMX kX
m=1

5X
i=1

�
X

impt(m)
1i − X true

1i

�2

:

where X
impt(m)
1i is the m-th imputed value for the i -th missing value

X1i and X true
1i is the true observed value of X1i . Here k = 1 for single

imputation and k > 1 for multiple imputations.
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Imputing the missing values through copula

transformation

Table:



Imputing the missing values through copula

transformation

Table: Table 9: Comparison between original data and copula-transformed
data using single imputation for Group 2

σ Correlation MSSR % SSR
Structure Orig.(nor.) Cop-tran. Ratio (O/C) (O > C)

1.0

Corr1 13.64 13.27 1.03 58.3
Corr2 12.38 6.20 2.00 92.0

Corr3(ρ = 0.5) 16.29 16.24 1.00 55.4
Corr3(ρ = 0.9) 8.70 6.48 1.34 72.2

2.0

Corr1 4,141.31 3,614.82 1.15 73.6
Corr2 4,220.18 3,273.75 1.29 91.2

Corr3(ρ = 0.5) 4,264.53 3,851.76 1.11 70.2
Corr3(ρ = 0.9) 4,197.88 2,793.05 1.50 84.1

3.0

Corr1 2,773,953.52 1,760,982.56 1.58 81.7
Corr2 2,873,573.64 1,885,597.04 1.52 91.0

Corr3(ρ = 0.5) 2,603,019.87 1,790,836.43 1.45 80.1
Corr3(ρ = 0.9) 3,436,021.98 1,604,055.17 2.14 88.4
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Imputing the missing values through copula

transformation

Table: Table 10: Comparison between original data and
copula-transformed data using FCS Regression multiple imputation for
Group 1

σ Correlation



Imputing the missing values through copula

transformation

Table: Table 11: Comparison between original data and
copula-transformed data using FCS Regression multiple imputation for
Group 2

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 164.68 123.08 1.34 85.00%
Corr3(ρ = 0.6) 149.42 109.95 1.36 83.00%
Corr3(ρ = 0.7) 132.64 95.48 1.39 82.20%
Corr3(ρ = 0.8) 112.58 79.57 1.41 83.10%
Corr3(ρ = 0.9) 84.70 53.40 1.59 86.40%

2.0

Corr3(ρ = 0.5) 56,391.21 39,703.39 1.42 86.80%
Corr3(ρ = 0.6) 56,417.01 37,341.96 1.51 86.30%
Corr3(ρ = 0.7) 55,458.96 35,888.29 1.55 86.60%
Corr3(ρ = 0.8) 53,648.33 39,250.03 1.37 86.50%
Corr3(ρ = 0.9) 50,264.93 30,896.51 1.63 90.30%

3.0

Corr3(ρ = 0.5) 74,206,031.68 44,532,451.31 1.67 86.90%
Corr3(ρ = 0.6) 77,116,532.29 42,631,176.04 1.81 87.50%
Corr3(ρ = 0.7) 76,957,607.66 41,943,270.76 1.83 88.00%
Corr3(ρ = 0.8) 75,842,964.49 55,855,584.64 1.36 87.70%
Corr3(ρ = 0.9) 75,184,163.76 42,523,936.26 1.77 90.80%
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Imputing the missing values through copula

transformation

Table: Table 12: Comparison between original data and
copula-transformed data using MCMC multiple imputation for Group 1

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 300.95 132.50 2.27 60.00%
Corr3(ρ = 0.6) 264.60 113.77 2.33 64.70%
Corr3(ρ = 0.7) 276.81 95.13 2.91 68.40%
Corr3(ρ = 0.8) 211.99 72.71 2.92 74.10%
Corr3(ρ = 0.9) 450.31 47.32 9.52 80.50%

2.0

Corr3(ρ = 0.5) 71,610.82 36,851.77 1.94 66.10%
Corr3(ρ = 0.6) 156,457.61 34,240.23 4.57 70.20%
Corr3(ρ = 0.7) 171,850.60 32,943.64 5.22 75.00%
Corr3(ρ = 0.8) 60,038.31 26,745.73 2.24 79.40%
Corr3(ρ = 0.9) 131,115.17 21,115.43 6.21 83.90%

3.0

Corr3(ρ = 0.5) 51,837,663.26 23,896,573.91 2.17 70.10%
Corr3(ρ = 0.6) 165,243,871.10 23,148,399.65 7.14 73.80%
Corr3(ρ = 0.7) 183,802,007.11 23,891,866.47 7.69 77.10%
Corr3(ρ = 0.8) 48,189,008.89 16,717,322.02 2.88 80.60%
Corr3(ρ = 0.9) 67,349,495.86 13,494,377.61 4.99 85.50%
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Imputing the missing values through copula

transformation

Table: Table 13: Comparison between original data and
copula-transformed data using MCMC multiple imputation for Group 2

σ Correlation MSSR % SSR
Structure Orig.(nor) Cop.-tran. Ratio (O/C) (O > C)

1.0

Corr3(ρ = 0.5) 127.54 132.10 0.97 57.60%
Corr3(ρ = 0.6) 115.44 113.55 1.02 61.10%
Corr3(ρ = 0.7) 102.34 94.08 1.09 65.30%
Corr3(ρ = 0.8) 86.99 74.35 1.17 72.20%
Corr3(ρ = 0.9) 65.26 48.47 1.35 81.20%

2.0

Corr3(ρ = 0.5) 39,757.02 35,230.30 1.13 67.10%
Corr3(ρ = 0.6) 39,631.01 30,936.11 1.28 69.00%
Corr3(ρ = 0.7) 38,944.15 27,789.97 1.40 73.10%
Corr3(ρ = 0.8) 38,106.04 29,270.04 1.30 79.20%
Corr3(ρ = 0.9) 35,414.91 25,431.77 1.39 84.30%

3.0

Corr3(ρ = 0.5) 43,374,578.45 22,551,396.98 1.92 71.60%
Corr3(ρ = 0.6) 44,902,158.06 19,198,351.45 2.34 72.20%
Corr3(ρ = 0.7) 44,977,065.21 17,619,423.92 2.55 77.10%
Corr3(ρ = 0.8) 45,876,052.72 30,256,223.22 1.52 80.60%
Corr3(ρ = 0.9) 44,235,290.84 29,549,312.57 1.50 85.50%
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Conclusions

Much of the dependence based multivariate analyses for
nonnormal data can be done using the copula transformation.
However information about marginals is lost.

Similar work has been done for principal component analyses,
factor analyses, structural equation modeling.

For missing data imputation for nonnormal situations, this
approach is very handy. Further extensive studies showed that
(for multivariate Lomax distribution) results under copula
transformation are as good as those obtained by imputation by
conditional expectations (assuming MCAR).

Comparison of imputation done by our transformation to
normality and that done by Box-Cox transformation showed our
approach is much superior.


