
A quantum symmetry preserving semiclassical method
Dmitri Babikov,a) Robert B. Walker, and Russell T Pack
Theoretical Chemistry and Molecular Physics Group (T-12, MS B268), Theoretical Division of Los Alamos
National Laboratory, Los Alamos, New Mexico 87545

!Received 29 July 2002; accepted 20 August 2002"

Symmetry constraints are built into a semiclassical propagation scheme. It is then applied to treat
H!Ne2 collisions at 30 K, where quantum selection rules restrict the final rotational states of
symmetric Ne2 molecules to the even manifold. The cross sections for state-to-state transitions are
calculated for symmetric and nonsymmetric isotopic compositions of Ne2 . All bound and long-lived
quasibound !trapped behind the centrifugal barrier" states of Ne2 are considered. This semiclassical
method captures symmetry effects and shows satisfactory agreement with the quantum results.
© 2002 American Institute of Physics. #DOI: 10.1063/1.1513457$

I. INTRODUCTION

Most semiclassical methods for molecular collisions
give results that violate symmetry selection rules. In this ar-
ticle we demonstrate a way to maintain the quantum property
of symmetry using semiclassical methods. For transparency,
we use the simplest version of the semiclassical method pro-
posed by Heller and known as the frozen Gaussian wave
packets method.1 Nevertheless, our approach is general and
it is straightforward to use it with more sophisticated and
accurate semiclassical methods, such as the Herman–Kluk
!HK" propagator,2



which the initial state of Ne2 is the ground rovibrational state
(v"0,j"0), at a total energy of 30 K. In Table I we show
state-to-state cross sections for transitions to all bound and
quasibound states for three different isotopic combinations of
the Ne2 molecule—two symmetric combinations (16Ne16Ne,
and 18Ne18Ne) and one nonsymmetric combination
(16Ne18Ne). As discussed in Appendix A, symmetric mol-
ecules exist only in even rotational states !a total of 11 states
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There, the amplitude of the wave function #Eq. !9"$ is very
small. For each j value this part of space is identified and is
not covered by Gaussians.

Second, we assign the initial momenta pn to the wave
packets to obey Eqs. !10"–!12". In Appendix B it is shown
that !for j%0) if the position rn is chosen anywhere between
the turning points, then four different pn vectors satisfy Eqs.
!10"–!12", and so we start four wave packets from each such
point. If the initial position rn is a turning point, then only
two different pn vectors satisfy Eqs. !10"–!12", and we start
only two wave packets from the turning points. If j"0, then
these are reduced to two wave packets starting from any
point between the turning points and one wave packet start-
ing from any turning point. This simplest situation is shown
in Fig. 2. Here we decided to place four initial wave packets
in each radial direction. Two of them start at the turning
points with no initial momenta. The other two start in the
middle between the turning points with equally-valued but
oppositely-directed radial momenta. When j%0 additional
tangential components of momenta appear !see Appendix B",
and the picture becomes more complex.

After the upper hemisphere is covered by Gaussians, we
reflect their positions and momenta through the center of the
sphere onto the lower hemisphere. This finalizes the sam-
pling procedure.

Our sampling procedure produces trajectories ‘‘on the
energy shell,’’ as opposed to Monte Carlo sampling from a
Wigner space distribution.3 We need to use ‘‘on the energy
shell’’ trajectories, because we also want to describe the qua-
sibound long-lived states of the Ne2 molecule !see Appendix
A" with the same procedure that we use for bound states.
Classical trajectories may be prepared at the energy of a

long-lived quasibound state, with appropriate initial condi-
tions so that they remain trapped forever behind the centrifu-
gal barrier. These trajectories permit us to reasonably de-
scribe quasibound states. On the contrary, Wigner space
sampling would produce some trajectories at energies above
the centrifugal barrier and allow the Ne2 molecule to disso-
ciate even without colliding with the H atom. These events
would create a problem in the present study.

C. How do we capture the effect of symmetry?

Let us consider two wave packets placed symmetrically
at the initial moment of time. We will call them the ‘‘!’’ and
the ‘‘

atom.
634ictur925 



just by a sign: 3rV(r!)"#3rV(r#). But for the case of a
nonsymmetric Ne2 molecule, where the two Ne atoms have
different masses, the two arrangements of the H– Ne2 ‘‘col-
lision complex’’ are different #Fig. 3!b"$, because of the
slight shift in the center-of-mass of the Ne2 . As a result, the
potentials and the gradients will be different for the ‘‘!’’ and
‘‘#’’ wave packets.

Let us consider first the symmetric case #Fig. 3!a"$. Each
Gaussian wave packet is propagated independently during
the collision with the H atom. Nevertheless, each pair of
wave packets, placed symmetrically at the initial moment of
time, will remain symmetric in its motion as the H atom
evolves along its trajectory R(t). This is clearly seen from
the equations of motion #Eqs. !6"–!7"$ for the two wave
packets. For the ‘‘!’’ wave packet we have
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