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computer. The iterative nature of these algorithms makes them
both hybrid.
In contrast to the electronic structure algorithms discussed

above, the new algorithm presented in this work is general and
solves any real symmetric eigenvalue problem. To our
knowledge, this is the first general quantum annealer based
eigenvalue solver and will be referred to below as the Quantum
Annealer Eigensolver (QAE). As discussed in more detail
below, our QAE algorithm is also hybrid since the variational
eigenvalue problem is solved via a sequence of many quantum
annealer optimizations performed with varying weights on the
constraint equations (i.e., Lagrange multipliers). The scanning
and optimization of the weights is done on a classical
computer. Mapping the eigenvalue problem to a quantum
annealer hardware is nontrivial, because the annealer solves a
minimization problem defined by an Ising functional of the
form H(s) = ∑ihisi + ∑i<jJijsisj, where the spin variables si
accept discrete values {−1,1}. Alternatively, the functional can
be converted to quadratic unconstrained binary optimization
(QUBO) form using discrete variables xi ∈ {0,1}, called qubits,
giving H(x) = ∑iQiixi + ∑i<jQijxixj.

30 The problem is how to
write down a ground state or eigenvalue problem in QUBO
form and explicitly construct the matrix Q.
Thus, the primary goal of this paper is to demonstrate a

mapping of the eigenvalue problem to the QUBO problem,
including the treatment of exited states and multiple
dimensions. For simplicity, we use a direct product basis set
for problems with more than one dimension. As a
consequence, this choice of basis set causes QAE to scale
exponentially with system size. However, choosing a nondirect
product basis set (for example, a MC-sampled set of grid
points) will give polynomial scaling. Since the D-Wave
machine has to be queried multiple times to accumulate
enough statistics, MC sampling could be interleaved with the
hardware sampling (this approach was not examined in the
present study).
The outline of the paper is as follows: First, we present our

solution to this problem, including the extension to the excited
state calculations and multiple dimensions. Second, we apply
our algorithm to two chemically important species, O2
(oxygen) and O3 (ozone). For the ozone calculation, a
reduction in the number of qubits was required in order to fit
the problem on the D-wave machine. Third, the introduction
of weighted constraints is presented following a technique used
to overcome the connectivity issue in the quantum annealer
hardware (i.e., D-Wave machine). Noise is also modeled in the
algorithm which is shown to reproduce the results from the D-
Wave machine. In the final discussion section, we consider
possible improvements of the algorithm and sources of error.

2. QUANTUM ANNEALER EIGENSOLVER ALGORITHM
2.1. Mapping of a Ground State Problem to a QUBO

Problem. The method is inspired by the variational principle.
Suppose we are interested in a ground state of a one-
dimensional system and its wave function Ψ is expanded using
an orthonormal basis φα and unknown expansion coefficients
aα: φΨ = ∑α α α= aB



V(r) and use a





as the total number of qubits exceeds the sub-QUBO size of
47, which is 3 × 16 for 1D, 32 × 6 for 2D, and 33 × 2 for 3D.
Once the linear dependence on K has been established (see
Figure 3), one can then verify the exponential dependence on
dimensionality d. The logarithm of the normalized computa-
tional time is plotted in Figure 4 as a function of the

dimensionality d. All of the curves exhibit a roughly linear
dependence on d which confirms the exponential scaling.
Again, the times for all K at d = 1 and for K = 4 at d = 2 deviate
significantly from the main trend because no partitioning is
required to compute those. The average slope calculated based
on d = 2 through 4 is 0.58 which is close to the theoretically
predicted value of 0.48 (for B = 3). When d = 5 is included, the
slope increases to 0.72 which is most likely due to the very
large problem size. The total number of qubits for d = 5 is KBd

= 972 to 3888 for K = 4 to 16 and B = 3 which results in a total
number of configurations 10300 to 101000. In summary, Figures
3 and 4 confirm the scaling law O(NλKBd) of the method using
a classical QUBO solver.

We did not perform scaling studies on the hardware
quantum annealer (D-Wave machine) because it was not
practical due to the small number of logical qubits and long
runtime. For example, for O2 we were able to approach small
problems with B = 9 and K = 1 to 7, and the runtime was about
tdw = 2500 s. This time does not depend on the number of
logical qubits K, because all problems are treated by the
hardware as maximum-size problems. In contrast, the classical
QUBO solver runtime for these problems was about tcl = 30 s,
which is almost 2 orders of magnitude faster. The long runtime
for the hardware quantum annealer is primarily due to the large
number of reads (see Figure S3). In addition, the analysis for
the d-dimensional harmonic oscillator would require an
extensive QUBO partitioning, which means another factor of
10 to 100 increase in tdw.

3.3. Chaining in Quantum Annealer. The only
constraint we have discussed so far is a normalization
constraint with associated penalty λ. However, there is another
constraint and penalty factor worth mentioning when running
on a quantum annealer (D-Wave machine). Namely, the chain
constraint and the associated chain penalty. The physical
qubits in the hardware do not have an all-to-all connectivity
which is a requirement of the algorithm. In fact, each qubit has
six neighbors at most (see Chimera graph).30 Fortunately,
there is a method to embed a fully connected graph on top of
the hardware graph. In this approach, a number of qubits are
organized into so-called chains. Qubits within a chain act like a
single logical qubit which is connected to all other logical
qubits. To program chains in the hardware Chimera graph, one
adds a set of constraints which have a single strength or chain
penalty c. As with any constraint, the associated penalty or
weight c should be neither too small, because then the chains
are broken, nor too large, because then the hardware will
become insensitive to the original problem. The simplest
approach to find a good chain penalty is to perform scanning,
in a similar way to λ scanning. Figure 5 demonstrates an
example of this two-dimensional scanning for the ground state
of O2 with a Fourier basis of size B = 7 (mmax = 3) and K = 3.



As expected, in the region of small c the minimum energy is
unacceptably large, simply due to broken chains. For large c we
see two regions: the region of small λ, which contains trivial
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