Downloaded via MARQUETTE UNIV on October 25, 2023 at 14:34:22 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

y, t.Titati at ta ity, ya ty, ti.

tt). T ti t a ia :Fit, t ti tti a aia :Fit, t ti tti a aia itti itti it tata ati a apti in i.S , a a ittpt t pia in tat i, O_2 () a O_3 (). F t a ati, a ti i t a i i t fit t a ati t t a a i i t fit t a t t b a ati i t fit t t t aiti t i t a t a a a (i., D-Wa a i). N i i a apti t a ittpi t t a i t pt D-Wa apa i. I t fia i i ti, i i in apt t a ittpa .

2. QUANTUM ANNEALER EIGENSOLVER ALGORITHM

2.1. Mapping of a Ground State Problem to a QUBO Problem. T $\mathbf{u}^{\mathbf{v}}$ t i i i t a iati a i i . S a it t i a tat a i $\mathbf{u}^{\mathbf{v}}$ i a t $\mathbf{u}^{\mathbf{v}}$ a it a ti Ψ i a i a t $\mathbf{u}^{\mathbf{v}}$ a it a finit a t $\mathbf{u}^{\mathbf{v}}$ a i φ_{α} a i finit $a_{\alpha}: \Psi = \sum_{\alpha=}^{B} a_{\alpha}\varphi_{\alpha}$ V(r) a a

a t	t ta 🗤	it	t	-QUBO	i
47,	i i 3 x 16	1D, $3^2 \times 6$	2D, a	$3^3 \times 2$	3D.
0	tia	K	а	ta i	(
Fi	3), at	i t	tia		
i 🎝	i ait d.T	a it 🗤	t 🗤	na i	😱 ta-
ti a	ti y , i tt	i Fi	4 a a	ti	t

3.3. Chaining in Quantum Annealer. T

Α	t	, i	t	i	📭 a Ct	₩ ^{si}	ito to	i
а	ta	a	,	i y e	t	ai	.Fa	С
t		i	: t	i	ψ a λ,	i	tai	t i ia

Funding

A.T. a B.K.K. a tatti a t a i t U.S. D at t t E P j tN. 20170221ER t La at Di t R a a D t t P a t at L A a t Nati a La at . L A a t Nati a La at i at Tia Nati a S it, LLC, t Nati a N a S it A t tit ati t U.S. D at t t E (C tat N. 89233218CNA000001). D.B. a tatt i t t Nati a S i F ati G at N. AGS-1920523.

Notes

Tat a 🗤 ti fia ia itt.

ACKNOWLEDGMENTS

W ta D-Wa S t , ii a t t DW2X i at LANL a t DW2000Q i i B a, Ca a a. A.T. ta LANL i i , ii , ii i 2017.

REFERENCES

(1) La , T. D.; J , F.; La a $_{1,2,2}$, R.; Na a $_{1,2}$ a, Y.; M , C.; O'B i , J. L. Q a t $_{1,2}$, $_{2,2}$ t . Nature 2010 T a 11

Journal of Chemical Theory and Computation

(37) Ga a, I, T i, A, Ba i, D. T ati t tat i a 1 and t i a 1 and t

614, 99-103.

(39) T i, A.; Bai, D. Viaiati t tia ti i a i a a a 3D t t i . J. Chem. Educ. 2015, 92, 305-309.

(40) Wa, Y.; L.", Z.; G, F.; Ha, J.-K. A to ti a it to a tai ia a ati titoriati. International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming; 2012; 395-408, DOI: 10.1007/978-3-642-29828-8 26.

(41) A a , T.; Ma ti -Ma , V.; H , I. T ar at ai a at ar a ai time. Phys. Rev. Lett. 2017, 119, 110502.
(42) P , W.; Fa , B.; T , S.; V tt i , W. Numerical Recipes: The Art of Scientific Computing; Caup i U i it P : Can, i , 1986; 364.

(43) Partitioning Optimization Problems for Hybrid Classical/ Quantum Execution; D-Wa S t \mathbf{v} I .: 14-1006A-A; 2017. tt :// it . \mathbf{v} a t \mathbf{v} / (a J 25, 2019). (44) qOp toolset 2.5.1; D-Wa S t \mathbf{v} I .: 2018. tt :// . a . 📭 (a J 25, 2019).